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We establish sufficient conditions for the nonlinear stability of incompressible,
inviscid, sw1rlmg flows using the Arnol’d energy-Cammxr method. We derive an
axisymmetric Lie-Poisson bracket and work with equations of motion in swirl-
' 'functlon—vortcx-densuy form. The flows and perturbations we consider may have
axial variations. The formulation is closely analogous to that of two-dimensional,
stratified, Boussinesq flows considered by Abarbanel et al. (Phil. Trans. R. Soc. Lond,
A 318, 349409 (1986)) and a hlgh-wavenumber cut off is necessary to overcome
mdcﬁmtcness as in that case. We give several examples of columnar swirling flows
and discuss the relation of our results to linear stability studies of swirling flows.

1. INTRODUCTION

The stability of inviscid, axisymmetric, swirling flows is an important subject because of
numerous problems of meteorological and aerodynamic significance which are well
approximated by such flows. Moreover, the rich phenomena of vortex breakdown have
recently prompted renewed interest in this area. See Leibovich (1978, 1984) for background.
In the present paper we establish sufficient conditions for the nonlinear stability of such swirling
flows to finite axisymmetric disturbances.

In linear stability studies of inviscid flows one seeks conditions on the ¢ base flow that ensure
that none of the eigenvalues of the linearized operator describing the evolution of perturbations
have positive real part (cf. Joseph 1976; Drazin & Reid 1981). The stability of swirling flows
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328 A.SZERI AND P. HOLMES

to axisymmetric infinitesimal perturbations was first considered by Rayleigh (1880, 1916),
who found that a ‘pure’ vortex with velocity field (u,,ug4,) = (0, V(),0), in cylindrical
coordinates, is stable only if @=r 3d/dr( %) > 0for all 7 in the domain of interest ((0, R) or
(0, 0)). Here k(r) = rV(r) is the swirl function. Subsequently, Synge (1933) showed that
@ > 0 is necessary and sufficient for stability. Most recently, Howard & Gupta (1962) derived
a sufficient condition for linear stability"of a vortex with velocity (0, V(r), W(r)), including an

axial component. The conditionis . S
J= ¢' / (dW > 1 : ' 1.1
dr £ (t.1)

where @ = r3d/dr(r*V?(r)) as before. J is a Richardson number and must exceed } everywhere
in the domain of interest. Note that all these results concern columnar flows: flows having no
z-dependence.

Non-axisymmetric perturbations of columnar vortices have also been treated by the method
of linear stability analysis. Non-axisymmetric modes seem generally to be more liable to
instability than axisymmetric modes. Necessary conditions for linear instability were given by
Rayleigh (1880) and Fjortoft (1950). Maslowe & Stewartson -(1982) and Leibovich &
Stewartson (1983) have recently given sufficient conditions for instability. For a review of the
current status of inviscid, linear stability studies of swirling flows, see Leibovich (1984).

It is well known that linear stability does not imply nonlinear stability for conservative
problems, even in finite dimensional systems (Holm et al. 1985). Nonlinear stability of an
equilibrium solution requires that small but finite perturbations remain uniformly bounded for
all time as they evolve under the full nonlinear equations. Linear stability is neither necessary,
nor sufficient, for this. The method we use is an extension of the classical notion of Liapunov
functions; it depends upon finding a constant of motion that has a local maximum or minimum
at the equilibrium point under study. Arnol’d (1965, 1969) was the first to apply the method
to two (space)-dimensional, inviscid fluid systems. Taking the kinetic energy plus conserved
quantities that correspond to symmetnes of the system via Noether’s theorem, he formed an
‘Arnol’d’ function, which is a constant of the motion, and proved nonlinear stability through
a convexity analysis of this function near. the equilibrium in question. The theory has
subsequently been generalized and applied to a wide range of solid, fluid and plasma systems.
The reader should consult Holm et al. (1985) for more background information and general
discussions of the method. Benjamin (1976) has used similar arguments, involving the energy
functional and flow foree, in connection with the stability of vortex rings. Also see Wan &
Pulvirente (1985) and Wan (1988) for a complete treatment of vortex patches and
axisymmetric vortex rings and Hill’s spherical vortex, and see Benjamin (1984) for general
background on variational methods in fluids.

» The vortex breakdown: phenomenon involves predominantly axisymmetric disturbances,
although non-axisymmetric modes do play a significant role (Leibovich 1984). It is therefore
appropriate to treat ‘nonlinear stability of .axisymmetric, swirling flows to axisymmetric
perturbations. This makes the flows ‘essentially’. two-dimensional, and avoids what seem to be
insuperable problems in the application of the ‘Arnol’d: method to fully general three-
dimensional flows (Holm et al. 1985). Because vortex breakdowns. of the bubble type
(Leibovich 1978) are spatially localized, we shall restrict ourselves to perturbations occupying
a finite, cylindrical spatial domam one may think of the test section of an experimental flow
apparatus. T R ' '
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STABILITY OF SWIRLING FLOWS 329

The paper is arranged as follows. In §2 we express the inviscid, axisymmetric Euler equations
as evolution equations for swirl function, k, and azimuthal vortex density, y. Henceforth we
work in these variables, along with the Stokes stream function ¢ from which y can be derived.
We derive an axisymmetric Lie-Poisson bracket with respect to which the evolution equations
are hamiltonian and we discuss various constants of motion, most of them related to classical
hydrodynamic quantities. Section 3 contains the major analysis of the Arnol’d function 4 and
the formulation of abstract criteria for nonlinear stability. In §4 we address the fundamental
problem of indefiniteness of the second variation of 4 and solve it with a high-wavenumber cut
off. Sections 5, 6 and 7 contain discussions of special classes of flows: columnar, non-rotating
and flows in annular domains, for which the general theory must be modified. Examples of
several columnar flows are given in §8 and explicit stability criteria are derived and compared
with the linéar stability results of Howard & Gupta (1962) A discussion of the method and
results is glven in §9 N '

2. EQUATIONS OF MOTION,_POISSON BRACKET AND CONSTANTS OF MOTION

We consider an inviscid, incompressible, axisymmetric flow in a cylindrical domain. By using
cylindrical polar coordinates and wrltlng the veloc1ty u=(u, ug, ) and pressure as p, the
axisymmetric Euler equations are : S

Aaa“u,a ‘“‘6+ ,aa“" of 1
aal:+ az+ ’aaz _g_’;’f /
36+ +%ﬁ; —o. (2.15)

Rather than working with the primitive variables (u,p) directly, it is convenient to define a
Stokes stream functlon 1/f to satlsfy (2.10) 1dent1cally, thus we set

w=d(22)

Moreover, because the flow is axisymmetric, we can reduce the remaining three equations to
two equations in swirl function « = ru, and azimuthal vortex density

A

AR s
The evolutlon equatlons for k and X can then be written, from (2 la), as

+{¢ x} —'—2vy.§flc, ©(2.24)

+{¢,x} 2a 0 ()~ 20y 2y + 0 (2.26)

oy’

22-2
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330 A.SZERI AND P.HOLMES

where {f, g} is the canonical Poisson bracket or jacobian:

ofog_f o (2.3)

and y = }* is the new radial coordinate. In equations (2.2) we have included the viscous terms
(multiplied by kinematic viscosity v) for later reference. Because y = £y, (2.24, ) constitute
a pair of coupled equations for the dependent variables x and y. Pressure has disappeared as
a dynamical variable, essentially because of our taking the curl to obtain y.

We shall study the nonlinear stability of equilibrium solutions of (2.24, b) with viscosity set
to zero, in the cylindrical domain D = {(r,2) |0 < r < R,0 < z < L}. We assume that the
equilibrium flows satisfy the no penetration boundary condition on r = R and are L-periodic
in the z-direction. This class includes z-dependent flows as well as columnar flows of the form
u = (0,V,(r), W,(r)) or (k,X) = (ke(¥),Xe(¥)). The class of perturbations considered satisfies
8u,(R,z) = 0 and du(r,0) = du(r,L): they are thus, like the equilibrium flows, axially periodic
and they satisfy the no-penetration boundary condition on the outer boundary r = R. Finally,
we require that the perturbations preserve flow rate, thus admitting a vorticity formulation of
the hamiltonian, below.

The most important conserved quantity for (2.24, ) is the kinetic energy

=1 (u*+u’+uz)d*‘x=1 (¢X+£2-)d3x+grul dz (24)
2 )" 67" 2J)o 2y 2 2R T

0

where @ is the volume flow rate through the cylindrical domain. We remark that ¥ = 0 on
r=0and y = Q@/2r on r = R, and « = 0 on r = 0 because of the singular coordinate system;
however, « is generally non-zero on r = R. In fact, equations (2.2) inherit a non-canonical
hamiltonian structure from the general (non-axisymmetric) Euler equations, and (2.4) is the
hamiltonian, as we now show. Lewis et al. (1986, equation (5.3)), derive a general Lie-Poisson
bracket for incompressible, inviscid fluid flow, including boundary terms. For fixed boundaries,
the general bracket is

{F(u),G(u)} = fnw'(i—f‘xsé—f)dax+fn (w-(%‘fx 8;—5)+V(f* —f) -ssvf—FHG)dA,

(2.54)

where the functional derivatives are defined via

F(u+edu) = %E-Sud*‘x-i~ -8—F°8u
=0 D u D 8“

dd, (2.5b)

D

d
de
and F e G indicates that the preceding terms are repeated with F and G interchanged. Here
o = curlu is the vorticity vector. The volume part of the functional derivative (2.55), 8"F/du,
lies in the space of divergence-free vector fields parallel to the boundary dD. The projection of

a general vector field on D onto the component of the Helmholtz (or Weyl-Hodge)
decomposition parallel to the boundary is denoted P. The surface part, 8" F/du, is a vector field
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STABILITY OF SWIRLING FLOWS 331

on 0D whose component normal to 0D is determined to within the gradient of an harmonic
function. Finally, the term V(f,—f) is an abbreviation for

u-p) (v S~ (e ;V) “).

which lies in the space of gradient vector fields on D, orthogonal via the L, pairing to the space
of divergence-free vector fields parallel to dD. We note that we must have either 8" F/du = 0
or 8°G/du = 0 to avoid difficulties associated with the bracket (2.54). This restriction turns out
not to matter to the arguments presented in this paper; see Lewis et al. (1986).

Integrating the bracket (2.5a) by parts, rewriting in terms of ¥ and y and setting spatial
derivatives with respect to the azimuthal coordinate equal to zero yields the axisymmetric
bracket {-,-}°, given below. We obtain

3G & 5G & 8G 8F
(o el bttt 3
500 = | |x{5r gl ++la 5e) {sx ax}]d
LT (8F @ (8G\ 8G d (SF\\TR
gl [“(aéz(a)fs;éz(sf))]- e
J”‘@K[SG@(F) acg_
0z [ v, 0z \ 8 wa

where {f, g} denotes the canonical bracket (2.3) and the functional derivatives are defined
via

2 dz, (2.6)

d

de

F(u+ edu) = L (ng +§F6 )d3x+LD%‘E Su dA (2.7

=0

where

5F (SF F SF)

Su,  \Bu,’ &, Bu,

is an element of the space of divergence-free vector fields parallel to dD. In interpreting (2.7)
we must keep in mind the relationship between the primitive variable u, and the derived
variables (y, &) and, although it does not appear explicitly, . In particular, the boundary
velocity field u,, is derivable from (),«) and indeed the boundary term can be rewritten in
terms of those variables. In (2.6) we have assumed that 6F/du, = 0, consonant with the
restrictions on the application of the parent bracket (2.5a2). We remark that we require
3F/38x ~ constant or 8F/3x ~ r,r>0, for one to be able to apply the bracket (2.6) to the
function F, otherwise one has problems with singularities on the axis of the coordinate system.
Thus, for example, 6H/0y = ¢, 8H/dk = k/2y and 8H/du, = (0,0, Q/2nR). Note that we
have used preservation of flowrate in this calculation. The axisymmetric functions form a
subalgebra within the larger Lie-Poisson structure. In fact the reduced structure implicit in
{-,*}° is that of a semi-direct product (Holm et al. 1985), a structure that arises in a finite
dimensional context in studies of rigid bodies with gravity (cf. Holmes & Marsden 1983).
Equipped with the axisymmetric bracket, the equations of motion (2.24, 4), with viscosity set
to zero, are derived from the hamiltonian (2.4) just as in the canonical case. For a general

function F we write .
F={F,H}°®
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[ [ o[ ) e 88 2 S
[ LS @) e
S ()| _onen
- [ el el s
L) 2] e 2

where a dot denotes dlﬁ‘erentlatlon with respect to time. Integratmg by parts several times and
using the boundary conditions ylelds

b (- e i

Equations (2.2a,b), less the viscous terms, then emerge on equating the factors multiplying
80F/8k and 8F/&y respectively.

"There is a finely judged analogue between the hamiltonian formulation developed above
and that for stratified, two-dimensional, Boussinesq flow given by Abarbanel et al. (1986).
Those authors (§2) write the equatlons of motion in terms of (scalar) vorticity w, density p and
stream function ¥ as

or

dz

E+{¢,p} =0, (2.8a)
0 4 y0) = =% (2.8
* ,p P ax ; : , ’
where p, is a reference densny and the problem is deﬁned in the (x, z) -plane (z vertlcal) w1th

the canomcal bracket ofd afa :
yeog_Yg ' ’
V= 0z0x Ox0z ' 29

The analogy between (2.2-2.3) and (2.8-2.9) is clear. In the present problem, « and x play
the roles of p'an’d , y and z replace z and x and the additional density term {gz/p, p} of (2.85)
is replaced by the swirl term (1/4y ) (8/02) (%) = {,x/2y}. Thus the centfifu'gal force due to
swirl plays the role of the gravitational force in the stratified flow problem. Moreover, the
'bracket derived by Abarbanel ¢t al. (1986, §7) is similar except for boundary terms to equation
(2.6). Analogous boundary terms would appear in the stratified flow bracket if a more general
class of disturbances were considered (cf. Holm 1986) We will return to this analogy in
discussing our results,

In addition to energy, the axisymmetric nature of the problem and translation invariance in
the z direction lead to the existence of additional constants of motion, some of which are, in fact,
Casimirs (Holm et al. 1985). Such functions, C, satisfy ‘ ‘

{C,F}°=0 (2.10)


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y o

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

STABILITY OF SWIRLING FLOWS 333

when bracketed with any function F of x and yx in the class considered.. Because - C =
{C,H}® = 0, C is.a constant of motion. : '
In this case, the constants of motion are:

C,= f yx d®x: impulse; (2.114)
Jo , ' : : S
Cs= J J(k) d®: generalized swirl; ‘ (2.11 5)
and ' '
Cy= I xf(x) d%x: generalized helicity. (2.11¢)
D , :

Here j and f are arbitrary real-valued functions that will be chosen later. It will be convenient
to separate circulation C, = f pX d3x from géneralized helicity as a special constant of motion.
Moreover, integrating C, by parts we find that C, is the difference of circulations on the axis
r =0 and on the outer boundary r = R. Direct differentiation shows that
'L : 'L .
I, = 2nJ wlpgdz and Ij= 21tf wlodz
[} 0
are each conserved. In application of the energy-Casimir method we exploit conservation of
I, by using it to balance the flow rate term of the hamiltonian when forcmg the Arnol d
function to have a fixed point at an equlllbnum configuration. '
The reader can check dC/dt =0 for each of (2.11a—); the Appendix gives a sample
calculation for C = C; to illustrate how the boundary terms appear in integrations by parts and
why the precise class of functions is important. This calculation shows that generalized swirl,
Cs, is in fact a Casimir with respect to functions F of the type mentioned above. The others of
(2.11) are Casimirs only for more restricted classes of functions. |
In the case of non-rotating flows, k = 0 and the Poisson bracket reduces to

{F,G}, = f {gi gx .- . ,;(2,.12)

the hamiltonian becomes H = fn vx d3x+%Qfo" w|zdz, and there is only a single equation of
motion o : ’

%')7(+{l/f,x}'=0., I (2.13)

A new constant of motion, the generalized vortex density
C, = f d(x) dsx, | o : (2.1'4)

exists in this case. Here the analogy is to two-dimensional shear ﬂow see Holm (1986) and

Arnol’d (1965, 1966, 1969). SR : v : '
Finally, in this section we dlSCllSS the cqu111br1um solutlons of the mv15c1d evolutlon equations

2. 2a, b '

( ) {'ﬁes e} - . . o . : (215a)

.{S[r.e’-.Xe 4;2 aaz( ) ; . ; o (215b)
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334 A.SZERI AND P.HOLMES

(Here and henceforth the subscript e denotes a quantity evaluated at equilibrium.) Equations
(2.15) imply that two functional relations exist among the functions ¥, k. and x.. From
(2.15a), because the (canonical) bracket vanishes identically, we can write

Ve = K(xe), (2.16)

where K: R— R is a function of k. alone. Rewriting (2.155) using the functional dependence

(2.16), we have 10, 1dk)oy. d(K){ }
— — (k%) = Ay

1 d(«2)
- (o e
and thus (2.154) becomes 1 ded) :
. {'ﬁe’ Xe 4y d'/,e} 0 ' (2.17)

and we obtain a second functional dependence

1 d(x})
Xe 4y d¢‘e '/’e)’

(2.18)

where V: R— R is a function of i, only. This is the analogue of Long’s equation in planar
Boussinesq flow (cf. Abarbanel ¢t al. 1986, equation (2.13)). In specific examples, because y,,
k. and ¥, are given, K and V can be computed.
For a columnar flow, the second functional dependence (2.17) simplifies, because Ke =
K.(y) is independent of z and we have :

= X(¥e); (2.19)

the same relation holds in the non-rotating case k, = 0, but (2.16) is void in that case.

3. CRITERIA FOR FORMAL AND NONLINEAR STABILITY

Taking the hamiltonian and the constants of motion from the preceding section we form the
Arnol’d function,

A(x,x) = H(x, ¥) +C(x, &)

= % fD (t/rx+%)dsx+g f:windz+2mf:wlﬂdz+ij(K) d“x+fDxf(K) d?x.
- 3.1)

Note that the boundary circulation I, = 27 f tw|gdz has been separated from generalized
helicity Cy and that impulse (2.11a) has not been included (it turns out to make no
contribution in what follows: we remark that Abarbanel et al. (1986) ignore the analogous
constant of motion fD zwdx dzin their study of two-dimensional Boussinesq flow). The constant
¢ and the functions j and f are as yet undetermined.

In this section we shall obtain sufficient conditions for the convex1ty of 4 in the
neighbourhood of a general (non-columnar) equilibrium flow (X.(y,z2),x.(y,2z)). We first
choose ¢, j and f'so that the first variation 84(y, k) vanishes at the equilibrium point (x,, k).
We then examine the second variation 8%*4(y,, «,): if 8%4 is (positive- or negative-) definite
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STABILITY OF SWIRLING FLOWS 335

then, as described in Holm ef al. (1985), we have formal stability. This implies stability of the
linearized hamiltonian evolution equations. To obtain nonlinear stability we must check that
the Arnol’d functional is convex near (¥,, &) : that it is bounded above and below in terms of
a quadratic ‘energy-like’ norm. Although formal stability implies nonlinear stability in finite-
dimensional systems, there exist counter-examples in infinite dimensions (Ball & Marsden
1984) and definiteness of 824 (., k) is necessary, but not sufficient, for nonlinear stability. Here
the analysis is additionally complicated by an essential indefiniteness in §%4, whlch we shall
overcome by applying a high-wavenumber cut oﬁ' in the next section.
From (3.1), the first variation is

A(x+€dy, k+€dk)

e=0

d
SA(X,K) = DA(X, K) (SXa SK) = 'a';

- flwere s

, ; .
+f(&) dx + xS (k) 8K‘] dsx+(§-+ 21|:c) J dw|pdz. (3.2)
) 0
Integrating the second term of (3.2) by parts, we may regroup terms to obtain
8A(x, k) J [(¢+f(x )8x+( +5' () +xf" (K))Sx]d3x+(Q+21'cc j dw|gdz. (3.3)

Here a prime denotes differentiation with respect to argument: j' (k) = dj/dk, etc. Inserting the
equilibrium solution, we obtain conditions on ¢, j and f:

'/’e +.f(Ke) =0, ‘ (340)
(Ke/29) +J' (ko) + Xe S (Ke) = O, (3.40)
Q+2mc =0, (3.40)

which must be satisfied if 84 is to vanish at equilibrium.
We now use the functional relations (2.16) and (2.18). Equations (2.16) and (3.44) allow

us to write
A =—K), | (3.5)

where K will be a known function of its argument in specific examples, and thus f can be
determined. Hence we may write f’(«.) and (3.45) becomes

(ke/2y) +) (k) — X K' (k) = 0. , (3.6)
Ke/2y = [Xe— V(¥e)] (dK/dK) (k), (3.7)
which may be substituted into (3.6) to yield

7 (k) = V) K'(k,),

From (2.18) we have

or, upon integration -
(k) = L Q) K'Q)dA. (38)
23 Vol. 326. A
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336 A.SZERI AND P. HOLMES

Sclectmg f,candy accordmg to (3 4c), (3.’5) and (3.8), we have the first variation

84= H(‘” K<x>> 8x+( i (K("Cv))’f'_(K)—XK'(K))VBK’]d”fc, o

whlch vamshes at cqulhbnum, as requlred
Next we compute the second variation from (3.9): -

-t

8“'A D”A(x,/c) (8x,8x)"' 6A(x+e§x,1<+e§/<)

= j (531{ dy—K'(x) dy 5K+2—y§/< 3+ V' (K(k)) [K'(x)]? 8k Ok
D :
+V(K(x)) K" (k) 8k 8 — K’ (k) 8x 8k — xK” (k) 8k 8&') d3x. (3.10)
Rewriting the first term with the operator £ defined in §'2 :

f 61/r6xd3x-—f Sy £ 16xd"x, ' (3.11)

we have, at equilibrium

S2A(Xes Ke J (8x,8«)

L S —K'(k) 5)(
X ’ 1 ’ ; 1y : R ( )
—K’(x.) [Q;+ V/(K(ke)) (K" (ke))? + (V(K(Ke) = xe) K" (x )] Bk
o (3.12)
The lower-right matrix entry may be simplified, by using the functional relations (2.16)—(2.18)
to give ‘
£ - =K'k 3.13
~K'(c) Oxedie ke Oy | (313)
v ' Ok, dr, 297 ok, ’ ‘

In this calculation we use the 1mp11c1t functlonal relation y = y( o xe), we also 1mphcltly
assume that this functional relation is monotone, so that the requisit¢ inverse is uniquely
defined. See §8 for cxamplcs .

Completing the square, from (3 13) we have

. | (3.14)

The first term makes it clear that 82.4 cannot be negatlve deﬁmtc and a sufﬁcmnt condmon
for positive definiteness is s
p Ldyfe_{_ Ke Oy (d}lfe) 0 (3 15)
ok, dk, 2420k, ZL* ’ )

This is our condition for formal stability. The interpretation of the operators 4/ %! and £!
n (3.14)—(3.15) will become clear in §4 and in the examples below. Essentially, we will need
to bound thc exprcss:on [o8x L 18y d® above and below.
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STABILITY OF SWIRLING FLOWS 337

A problem is immediately apparent. Inequality (3.15) cannot be expected to hold in ‘general
for the simple reason that the eigenvalues of the operator

1/ @ 193\
< —7(5:2*572‘737)

have no upper bound. Consequently the eigenvalues of £~ accumulate on zero and 1/%! is
unbounded. Thus, perturbations 8y having high spatial wavenumbers will make the third
term of (3.15) large and negative. This suggests that we limit the class of perturbations, or
modify the model appropriately, to provide a high-wavenumber cut oﬂ‘ We address thls issue
in §4, after obtaining criteria for nonlinear stability. ' '

We require convexity estimates of the form

Q(Ax, Ax) < A(Xe+AX; Ke+AK) = A(Xes Ke) = DA(Xes ke)  (Ax; Ak)

def

= A(Ax, Ax) = A(Ay, Ax) +C(Ay, Ax), (3. 16)

where Ay, A« are finite (but small) perturbatlons and Qisa quadratlc functional that satisfies
Q(v) > Oforv # 0. If such a functional @ can be found, then we may define the norm || (x, )| =
vV [Q(x,¥)]. If, moreover, 4 is continuous in this norm at (y,,«,), then it follows that the
equilibrium is nonlinearly stable. A sufficient condition for continuity is that 4 is bounded
above: A(x,y) < C||(x,y)||® (see Holm et al. 1985, §2).

As a first step to bounding 4(Ay, Ax) from below, we rewrite 4 with the aid of Taylor’s
theorem. Expansion of the integrand of A(y, k) about an ethbnum flow conﬁguratlon rcsults
in the quadratic form with ‘remainder’: : SRS e

dta
N D (Xes Ke)
24(Ay, Ax) = f Al Z 3y (A")
D | 3% e, W

axa,c(xe, k) g (Keke)

.+@(lel”,.leI”IAKI,leIIAKI?,IAKI”), (3.17)

where a(y, k) is the integrand of the Arnol’d functional. Restriction to small but finite
perturbations will ultimately allow us to neglect the cublc and hlghcr-order terms in (3 17).
Completmg the squarc, we have

/2A‘(Ax,’AK) J [{\/(g— ) Ay 52a/ai(/a;_(xe,v )Ax}z .

i 2 . ‘ 2 . '- B
| {gme, )~/ o >]}<AK)] . (318

g_

Now, suppose that one is ablc to find bounds ¢, £ and m,m* such that ’

< axax("e’ o< e
S ; : O STRRNE. S
and t O<m  (XerKe) Sm* < 00, (320

6

23-2
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338 : A.SZERI AND P.HOLMES

then a lower bound to (3.18) is

Q(Ax, Ax) = f N [{\/ LAy + '{/—.lg;_l a—ax.-zg— (Xes Ke) AK‘}2 + {m' —-g}:} (A/c)"'] ddx.

K
(3.21)
The quadratic form (3.21) is a suitable norm provided ‘
m™ > ()L - (3.22)

As for formal stability, a high-wavenumber cut off will be required to meet this condition.
The existence of the upper bound m* ensures continuity of the norm ||Ay, Ax||* = Q(Ay, A«).
Thus there is a limit on the growth of perturbations that depends only on their initial size:

lAx(8), Ax(e)|1* < ’—Tl—t lAx(¢ = 0), Ax(t = 0)*. (3.23)

Computation of the integrand matrix entries of (3.17) for the case of general axisymmetric
flow yields the following. Provided there exist bounds ¢, ¢* and m~,m* such that

r<|-K' (k) <1, | (3.24)
-« (Oxe 9¥ _Kia_y)< +
O0<m < (axe dr., +2y2 o) S m* < 00, (3.25)
with m™ > (£ L, ©(3.26)

then the flow (x.,«.) is nonlinearly stable to axisymmetric disturbances in the norm (3.21).

4. THE HIGH-WAVENUMBER CUT OFF: STABILITY THEOREMS

In this section we restrict our attention to perturbations of vortex density Ay whose
expansions in eigenfunctions of £ terminate at finite order. This permits us to obtain sharp,
albeit conditional, criteria for formal and nonlinear stability and to replace the inequalities
(3.15) and (3.24) by specific statements. To justify such a procedure we appeal to the physical
origin of our problem. To profit from the hamiltonian formulation we have chosen to study
stability of inviscid flows. In a real fluid, the arbitrarily large velocity gradients that accompany
high-spatial-wavenumber vortex density (and swirl) perturbations necessitate inclusion of
viscous effects, no matter how small the kinematic viscosity may be. Thus, inviscid stability
results can only be expected to yield physically reasonable predictions for perturbations of
bounded wavenumber, such as those defined below. Naturally, it is more satisfying
mathematically if conditions exist under which arbitrary perturbations are stable, but, as we
have seen, this is impossible in the present case. Abarbanel et al. (1986) also found it impossible
in the analogous problem for stratified flow and they devised alternative model equations that
are ‘blind’ to high wavenumbers by modifying the laplacian operator in that problem.

In this paper we prefer to cut off the wavenumber of disturbances in y, with the following
justification. One can perform a linear stability analysis of equations (2.2a,b) about a
columnar equilibrium. It is possible to show that high-wavenumber disturbances in y decay
exponentially with a time constant of order wavenumber squared multiplied by viscosity. Thus
we conclude that dangerous disturbances are typically of low to moderate wavenumber, even
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STABILITY OF SWIRLING FLOWS 339

in weakly viscous flows. Thus, although our analysis is inviscid, it seems reasonable to neglect
such high-wavenumber disturbances, which would be rapidly damped in physical situations.
Here the trouble revolves around finding a lower bound for the quantity

f Ay L7 Ay dix. o o (4.1)
D ‘ : ‘
The eigenvalues g, of £~ are the inverses of the eigenvalues A, of

(e 8 19
Z —‘F(E?““W:a—,)-

Separation of variables leads to Whittaker’s equation in the radial coordinate: Sturm—Liouville
theory implies that the eigenvalues A, are a countable sequence, unbounded above:

0<A <A <AK.., o |  (4.20)
and thus, O=pe < py Sfy...<1/2°, ’ (4.25)

where the smallest eigenvalue is given by A~ = 4n*/R* (recall that R is the radius of the domain
D). The theory also gives a simple estimate for eigenvalues A, ,, and eigenfunctions of large
orders 7, m. If n is the number of mternal zeros in r€ (0, R) and m the number of internal zeros
in ze (O L), then we have

Ay = ek A, , 4% TN for a>Mp1, 4
0sm<M

where N Mn

Now if we admit only those variations in vortex densny which can be expressed in terms of
the eigenfunctions ¢, of & as the finite sum

N : ; .
_ Ax(r,z) = 121 ¢ 9y(r,2), (4.4)
we may write '
‘ . ,
f Ax.?"Axd‘”’x':I (Zc‘¢‘£f“lc,¢,)d3x
D ; D \i,5 ;
. y N
- [ (25208 z“{zf by
D \i,s 44 s 4 Jp

We théfefore obtain the bounds

%f (Ax)”dsxsj Ax.?“Axd“xé-Xl:J (Ax)?*d%x, (4.5)
N JD D D

the lower one depending upon the order N of our wavenumber cut off. Thus, restricting
ourselves to finite wavenumber perturbations of the form (4.4), we may replace £ ! by its
lower bound 1/A, or upper bound 1/A7, as approprlate, in the inequalities (3.15) and (3.26)
to obtain the following.
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340 A.SZERI AND P.HOLMES

THEOREM 4.1. (Formal stability of axisymmetric flow). If an equilibrium flow (Xo,Ke, o) is such
that ‘
2
Redde ke Oy, (‘;’f) >0 (4.6)
e

at every point (y,z) € [0,3R*) X [0, L] of D for an eigenvalue Ay of L, N large, then (Yo, KesYre) is
Sormally stable to all axisymmetric perturbations in k and to axisymmetric perturbations in y expressible as
(4.4).

THEOREM 4.2. (Nonlinear stability of axisymmetric flow). If an equilibrium flow (x.,K,) ts such that
constants ¢, t" and m™,m* exist satisfying (3.24) and (3.25) with

m™ > Ay(t)2, (4.7)

where Ay is an eigenvalue of £, N large, then (X.,k.) ts nonlinearly stable in the norm (3.21) to
axisymmetric disturbances in k and ), provided that the x disturbance can be expanded as in (4.4).

In special situations it is possible to obtain unconditional stability results without resorting
to a wavenumber cut off (see §6, below).

5. COLUMNAR FLOWS

In this and the next section we address some special cases of equilibrium flows. Columnar
flows, whose velocity fields are independent of z, form an important special class of equilibrium
swirling flows. It is easy to check that any velocity field of the form u = (0, uy4(r), u,(r)) satisfies
equation (2.1), regardless of the functions ug, u,. Analytical solutions of this form are therefore
plentiful, whereas to our knowledge analytical solutions involving swirling flows with non-
trivial z-dependence are not numerous (asymptotic solutions do exist; cf. Leibovich & Randall
(1973 a,b) and Leibovich (1978, 1984)). The examples we discuss in §8 are therefore drawn
from the class of columnar flows. ' '

As we pointed out in §2, the functional relations in the columnar case are

Xe=X(We), Vo= K(x), (5.10)

derived from the equilibrium conditions {{, .} = {{, X} =0, because the expression
0/0z(«%) = 0 if k, is independent of z. (This also implies that the radial coordinate y is
functionally dependent on &, (or x., or ¥.); we therefore write

y=Y(,). (5.18)

We seek conditions sufficient for 84, = 0 (3.44,b) after restoring the impulse c; fD yxdix to
the Arnol’d functional to obtain

Yoty +fik) =0, (5.20)
(ke/24) +7 (k) + X f (Ke) = 0, (5.20)
and (3.4¢). Using the columnar functional relations (5.14,4) we obtain
fk) = —c ¥k)—K(k), (5.30)
Fk) = = [K/2Y ()] + X W) [0 V' (k) +K ()], (5.35)
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STABILITY OF SWIRLING FLOWS 341

so that, making these substitutions for f,7, the first variation is -

o4= f;, |t+ety— 10 ~ Koy

| +{3 G’ﬁ)*” (X(K‘(“K')) -0 @T () +K ’(K>>}5K] d'. (54)

As required, 84(x., k.) = 0.
The second variation is

4= J [Szﬁﬁx 2(62Y'(K)+K ))8¢8K

-+ (5—41,—(‘-—)+"—Y’2—(‘Ki)),)+X'<K(K>> K'(0) (6 Y/(6) +K'(6))
+ (X(K(K))—x) ¢ Y"(5) + K” (K))}Sxﬁx]dsx,' . 59
which, upon evaluation at cqulllbnum, simplifies to B ' o

84, = J' [8)(3’“ dx—2(c, Y’ (k) + K'(k,)) x O«
b : ‘ ,

e gy( St L X (K(e) K (k) (Y () + Kl )}&cﬁx]d“x, (5:6)

because x. = X(¥.) = X(K( e)) and y= Y (ke ) at ethbnum Completmg the square, as in
§3, (5.6) becomcs :

—18.,__ 612 _ bs 2] s
| 824‘? =~J; [(\/59 Sx \/1 _ISK) +(e22. 2_1)(§(<) ]d x’; -(5.74)
where B A —-c,Y (K‘e)+K( k), (5.7b)
and e ; () 4 X (K(k)) K ()

It is evident that a sﬁfﬁcient condition for formal -stability is - e IR
top— (/L) >0, . (58

To satisfy (5.8) we will have to use the high-wavenumber cut off of §4, but before addressing
this problem we rewrite (5.8) in a fashion reminiscent of the Howard & Gupta (1962) criterion
for linear stability. Because formal stability implies linear stability we expect a result
comparable to theirs. Certainly for positive definiteness of 824, we require ¢,, > 0. If we choose
the free parameter ¢, = 0, so that ew = K’(k,), this condition may be rewritten

ke dy | dy. (d'ﬁe)
%" d, de, " dy \de,) ~ 0

Upon multxphcatlon by (d/c /dy)’ this yields

K di , dxe de o
2 dy T dy dy > 0. o - (69
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342 A.SZERI AND P. HOLMES
Because for a columnar flow u, = W, = dy./dy and x, = —dW,/dy, (5.9) may be rewritten
again: &, d, dzm;

W dy -W, == rra £> 0. o (6.10)
In the same variables the Richardson number criterion for linear stability of Howard & Gupta
(1962) is Ke dk, 1 1

J=-5 AW 1
2y* dy (dW,/dy)’

Ke dre 1 (dIt)" o

or 5 dy 4 ( dy > 0. | (6.11)

Note the similarity between (5.10) and (5.11). In specific examples the similarity is even closer;
see §8. It is significant that the factor § occurs in the linear stability criterion compared with
1 in the formal stability criterion: prec1scly the same ratios emerge in the stratified flow analysm
of Abarbanel et al. (1986, §2, equations (2.47-2.48)).

We now turn to the convexity estimate required for nonlinear stability. As in §3 (equations
(3.17-3.23)), we obtain a quadratlc functional form for 2A(Ax, Ak). The required bounds

£, and m™,m* are |—Cz Y'(k,)—K’(k JI < ¢, (5.12)
0 <m” < [(re/29%) Y’ (ko) + X' () K' (k) (Czy'(")"‘K( ))]
<m* < oo, (5.13)

over the range of ,, .. The lower bound for 24(Ay, A«) is then

| Q(Ax,AK>=fD [(\/ (£ Ax NG '(ﬁg_{('("e))&)u(m- Egz)(AK) ]d’x.
(5.14)

The quadratic form Q(Ay, AK) is a suitable norm for the disturbance (Ax,Ax) provided that
it is positive definite. Application of the high-wavenumber cut off yields the condition
m™ > Ay(th)? ‘ (6.15)

for Q(Ay,Ax) given by (5.14) to be positive definite. The upper bound m* of (5.13) ensures
continuity of the Arnol’d functional in the norm (5.14) and thus nonlinear stability. Argumcnts
analogous to those in §4 yield the following.

TueorEM 5.1. (Formal stability of columnar flow). If a columnar equilibrium flow (Xe, Ko, Vo) 15 such
. ’ = Aely >0  (5.16)

at every point in D, with e,,, €5, deﬁned in (5.7b) and Ay, an ezgenvalue of &, N large, then (XeKes ¥e)
is formally stable to all axisymmelric perturbations in k and to axisymmetric perturbations in y expressible
as (4.4).

THEOREM 5.2. (Nonlinear stability of columnar flow). If a columnar equilibrium flow (x., k) is such that
there exist bounds £, ", and m™, m* satisfying (5.12) and (5.13) with m™ > Ay (t*)%, for A, an eigenvalue
of the operator &L, N large, then (x., k) is nonlinearly stable in the norm (5.14) to axisymmetric
disturbances in k and y, provided that the latter can be expanded as in (4.4).

We note that, although the equilibrium flows must be columnar, the disturbances may have
nontrivial z-dependence.
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STABILITY OF SWIRLING FLOWS . 343

6. NON-ROTATING FLOWS

A second special class of flows are those in which there is non-trivial - and z-dependence,
but the flow has no swirl, i.e. #, = 0 and k = 0. The disturbances we consider here will also have
no swirl, so that the variable « vanishes from the problem. Although such flows are of less
practical interest than swirling flows, the structure of the constants of motion is significantly
different and unconditional stability results can be obtained: one does not require a high-
wavenumber cut off. The analysis in this section closely parallels Arnol’d’s (1965, 1966, 1969)
studies of planar fluid flows, because we are concerned only with the vortex density y, and the
stream function ¥, (. plays the role of the scalar vorticity w, in Arnol’d’s study).

Referring to §2, we have the single equation of motion (2.13) and the associated Arnol’d
functional consisting of kinetic energy plus generalized vortex density (equation (2.14)):

Aly) = -;—Jntﬁxdax+%f:wlgdz+fn B (x) d3x+2me;u|R dz. (6.1)

0

As before, to choose @ we require that the first variation,
'L
3A(x) = f By (dx+x 8¢) + D’ (x) dx] d3x+(§+2nc) f dw|pdz
D , 0

L
=J [+2(x)] 8xd3x+(Q+2nc)f dwlpdz (6.2)
D 0
vanish at equilibrium y,. This implies that

&(Xe) = —Ve ¢=—Q/2m, | (6.34,5)

and because {{,, X} = 0 at equilibrium (equation (2.13)) we have the functional relation
¥.= ¥Y(x.) and (6.3a) becomes

®(x.) = —f: P(2) dA. (6.4)

From (6.2) we find the second variation

524(x) = fD [5x 27 83+ 8" (x) (81)%] s, (6.5)

and thus for formal stability we require that the expression

[ Bxeaxr oo @r11 0 (6.)

be definite. Here we have a choice; although the first term is certainly non-negative, the second
term can take either sign and thus we can seek either positive or negative definiteness. This

leads to the conditions »
®”(x.) > 0 (positive definiteness), (6.7q)

—@"(x,) > 1/A~ = R*/4n® (negative definiteness). (6.75)

In the latter we have employed the smallest of the eigenvalues of & from §4, but note that
A~ does not depend on wavenumber. (It does of course depend on the radius R of the

domain.)
24 Vol. 326. A
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344 A.SZERI AND P. HOLMES

Nonlinear stability follows, as above, from a consideration of finite perturbations Ay. We
examine the functional

A(Ax) = A(x.+Ax) —A(x.) —DA(x.) - Ax
- fD [Ax £ Ax+ 8 (x.) (Ag)*] d%+ O(1AxP). (6.8)

We must consider the positive and negative definite cases separately. In the former, it will
suffice to find constants
0<c<P(x.) Sc* < (6.9)

for then we can choose the norm

iaxt = ( | idx 2~ dx+e e de)* (6.10)

and it will follow that )
[Ax]? < A(Ax) < (¢*/c7) llAXI2. (6.11)

This will imply nonlinear stability.
In the negative definite case we will require constants ¢* > ¢~ > 0 such that

—0<—c"<P(¥) < —¢c"<0 and ¢ >1/A". (6.12)

In that case (6.11) will hold with the norm

}
Iax) = ( [t bn—ax 2 a1 an). (6.13)
D
Summarizing, we have the following.
THEOREM 6.1. If an axisymmetric, non-rotating equilibrium flow (X, V) satisfies either
(i) 0<c<P"(x,) <c" < o0, (6.144a)
or () —o<—c"<P(x.) < —¢ <0 and ¢ >1/A" = R'/4xn? (6.145)

Jor positive constants ¢ > ¢~ > 0 at each point on the domain D, then (x,, re) is nonlinearly stable to all
axisymmetric non-rotating disturbances.

7. ANNULAR DOMAINS

The formal and nonlinear stability analyses developed for cylindrical domains adapt easily
to annular domains of the form

D' ={(r,2) |0 <R, <r<R,;0<z< L} (1.1)

The boundary condition u, = 0 at r = 0 is replaced by #, = 0 at 7 = R, and the only other
significant change is in the bounds obtained for the eigenvalues of £. Note that the solutions
of y = &'y are unique despite the annular domain; such a domain is simply connected in the
(y, z)-plane, although not in three dimensions. The minimum eigenvalue A~ becomes

A = 4n?/ (RI—R2), (1.2)
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STABILITY OF SWIRLING FLOWS 345
and the asymptotic form analogous to (4.3) for high-order eigenvalues becomes
, _4m*(N+2)®
YRR
Equations of motion and conserved quantities all remain unchanged, apart from the
integration domain D’, and analogues of Theorems 4.1-4.2, 5.1-5.2 and 6.1 exist, with A,

replaced by Ay of (7.2) and the eigenfunctions of (4.4) replaced by eigenfunctions ¢; of &
defined on D’.

(7.3)

8. EXAMPLES

We now illustrate the stability theory developed above by applying it to several examples.
We know of few examples of analytic solutions to the axisymmetric Euler equations in finite,
cylindrical domains having both non-zero swirl and non-trivial, periodic z-dependence; these
we shall consider together with numerically generated solutions in another paper. See also Wan
(1988) for analyses of the Hill’s spherical vortex and toroidal vortices, and Benjamin (1976)
for remarks about the stability of vortex rings: these are both axisymmetric solutions with z-
dependence, but in infinite domains and without swirl. Here our examples are all of columnar
flows.

We shall give three examples. First we consider an exponential axial velocity profile with
zero swirl. Application of the results of §6 permits subdivision of the parameter space into
regions in which one can and cannot prove nonlinear stability of the kind in Theorem (6.1).
We follow with an example of a columnar swirling flow: the same exponential jet or wake with
solid-body rotation. The critical stability parameter for this example is a swirl ratio; we
demonstrate that increasing the rotation of the baseflow has a stabilizing effect. This effect has
already been noted in linear stability studies (cf. Howard & Gupta 1962).

Finally, we consider the more important example of the exponential wake or jet with a
Burgers vortex profile for the swirl velocity. This flow matches experimental data for flows
which are prone to vortex breakdown, as described by Garg & Leibovich (1979), for example.
One may view the axisymmetric form of (small-amplitude) vortex breakdown as a finite
disturbance on a columnar flow. The stability of such a baseflow to such a disturbance is
governed by the analysis of §5. Moreover, the special form of this last example allows us to
obtain nonlinear stability criteria independent of any high-wavenumber cut off.

Example 1. Non-rotating exponential jet or wake. This example has the velocity field
(u,, ug, u,) = (0,0, W,) with the profile
We=1+406¢e", (8.1)

where o > 0,8 # 0 are parameters. Equation (8.1) describes a two-parameter family of
equilibria of the axisymmetric Euler equations, with stream function and vortex density

Ye=y+(8/a)(1—e™), (8.2)
Xe = ad €, (8.3)

and k, = 0. One may solve (8.3) for y in terms of x, and substitute into (8.2) to obtain

.= ¥(x.) =—£ln(%)+§(l—%). (8.4)
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346 A.SZERI AND P.HOLMES

The function @”(y,) of Theorem 6.1 is therefore

” - dY e¥ 44
&(r) = — 5 () = . (8.5)
. Xe o
Now, if § > 0, we have
146 _ ., i)
0<—ay SP(Xe) S—z5— (8.6)

These provide the bounds ¢7,¢* in (6.14 a) ; thus we have nonlinear stability for all § > 0. This
establishes stability of jet-like profiles.
For —1 < 4 <0, we have

SPD"(x,) < — (la;'lj;f') <0. (8.7)

Thus we have the bounds —¢*, —¢™ of (6.144) and thus for de(—1,0), the flow (8.1) is
nonlinearly stable to disturbances without swirl provided
az R4 -1

8] < (1 +W) . (8.8)
The last inequality comes from requiring ¢~ > 1/A” = R*/4n®. Thus wake-like profiles with
sufficiently weak velocity decrement are nonlinearly stable. However, when 6 < —1 one can
see from (8.6) and (8.7) that we cannot demonstrate definiteness. Note that for § = 0 the profile
degenerates into a uniform flow w, = 1 and the function ¥ is not defined. Figure 1 illustrates
the criterion (8.8) and shows examples of stable velocity profiles.

+1+
| (8)
4+
(a)
3
2 stable r Of
é
1 =
oF
-1 I | ) _1 | ]
0 10 20 0 1 2 3
@ w

Ficure 1. (a) Stability diagram for non-rotating exponential jet or wake, R = 1. (b) Stable axial velocity profiles
of non-rotating exponential jet (R=1, § = 2, « = 10) and wake (R=1,48=—-0.2, « = 10).

Example 2. Rotating exponential jet or wake. For our second example we add a solid-body rotation

up =1
o K=y | 89)
to the profile (8.1-8.3) of the previous example. The theory of §5 is now applicable. We start
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by. considering the linear Richardson number criterion (5.11), due to Howard & Gupta
(1962). Computing from (8.1-8.3) and (8.9) we have :

_ ke dk, (A2 B e |
J= éy—dy(dy) “wF g 4 (8.10)

for linear stability. The function y e ** achieves its (unique) maximum aty = 1/2a, thus if this
point lies in the domain D we have

1

2> afde, R>a7, ‘ , (8.11a)
or otherwise - Q*>a’RY 4e®), R<a, ' (8.11b)

where Q = |8/ is the swirl ratio. Satisfaction of (8.11a or b) guarantees linear stability. We
note that the radius 7 = a} is the point at which d*W,/ds* = 0: the inflection point.
We next consider formal stability, applying the criterion (5.16) e, — A, €2, > 0. Here

ey
dy e o 143 (8.124)

Sha Tk, B B

and
ke dy dx. _ 1 2§e {eco+1+6e

i ne = _ —ayl s« - ' - -
PR T TR ( 3 )

from (5 7b) by using the functional relations derived from equations (8.1-8.3) and (8.9), for
the flow at hand. Thus, to obtain the best criterion for any given wavenumber cut off A, we
must maximize the minimum value of

(8.120)

ey _ (B2/2y)—atd eV (1+c,+0e™)

2= (Fqatsc) (819
over the domain D (y€[0,2R?]) by the best choice of c,, given a, 8, 4. It is awkward to give
general criteria; however, making the special choice of the free constant ¢, = —1, (8.13)
becomes ‘ v :

é 2 e2az1_/_ .
(6‘ % a’, (8.14).

which takes its minimum value at y = 1/2a. Thus from (5.16) sufficient, but not necessarily
optimal, criteria for formal stability are

cg 9%>“+A, R>at, (8.154)
and | Q> (P +Ay) R ™, R<at . (8.150)

These should be compared with the linear Howard-Gupta criteria of (8.114,4). As in the
analogous stratified flow results of Abarbanel ef al. (1986, §4) the criteria differ by a factor of
1 and addition of the ‘eigenvalue’ term to the formal criteria. Of course the latter are more
stringent, because formal stability implies linear stability, but not vice versa (Holm et al.

1985).
25 Vol.326. A
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- Finally, to obtain sufficient conditions for nonlinear stability, we examme mequalmes
(5.12-5.13) and (5.15), obtaining :

+
=

l1+cz+8e‘°‘”

(8.16)

1 ) 14¢c,+de
O0<m < [——az-—e’“"(——z-—-———)] <mt< oo
. = 2!/ /g '3 .

m™ > Ayt | J

In view of the term 1/2y in e,,, we cannot choose the upper bound m* < 00. However, because
the swirl function perturbations Ak belong to a class of functions for which the integral
ID(AK)2/2_1/ d®x < o0 is defined (Ak ~ y as y—>0), the continuity arguments depending on the
upper bound may be modified slightly with the same conclusions for m* < 0o0. Thus our task
is to choose c¢,, depending on a, 8,4, such that the ratio m™/¢*? is maximized. Once more it is
difficult to give general results, but we can obtain a simple criterion by selecting ¢, = —1, as
before. We then have

=6/pl =7 (8.174)

' 2
and can take m~ = min [__a_2 ’2“”] >0
T vel0,iRY) 2y Q
= _l__a_2 —aR?
A
Thus a sufficient condition for nonlinear stability of the exponential profile with solid-body
rotation is

for R<ad (8.174)

Q> (e F Q) R}, R<at (8.18)

Note that (8.18) is more stringent than (8.155).
In special cases we can make optimum choices of ¢, and thus improve (8.15) and (8.18). We
indicate this procedure for Example 3, below.

Example 3. Burgers vortex with exponential jet or wake. In this final example we consider the
equilibrium solution given by '
We=1+ée™, y,=ade™
s (8.19)
k=AY, Y=yt (-, |

i.e. we take the axial profile of the previous examples and add an exponential swirl profile. In
this case the Howard & Gupta (1962) Richardson number criterion (5.11) gives, after some
calculation (B/8) = 2 > ay?/2(eV—1). (8.20)

Maximizing the right-hand side we obtain ca. 1/3. 08828x at y &~ 1.59362/a; thus sufficient
conditions for linear stability are

Q> 1/3.088280 if R> (3. 18724/a)}, (8.21a)
and Q> aR/8(eFR 1) if R< (3. 18724/0:)* (8.215)

Again the swirl ratio £ is a key parameter.
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- As in the previous examples, for formal stability we use the functional relation (8.19) to write
y=—1/aln[(1—«,)/f] and x, = ad[1 — (k./B)]. Thus we obtain
dy  dyp _ e (O+e)

_Csz dk, ocﬂ af

(1 +¢,) € )
ocﬂ (1 +——. 3 ’ ‘ (8.224)
o _ Ke dy | dy. _Bl—e) e ad
_Jq 4 ‘2 = 2_1,(2 dIC ac T dk, ‘12 2y2 af B ‘12
< e¥~—1. (8 (14¢,) e
> = GTe) € :
:r [S5-(p)
= :
= 5 Thus by Theorem 5.1 a sufficient condition for formal stablllty is
= ;
=0 ev—1 (14c,) e* (1+cz) e\ '
& S w7 i S b 5 S 62
3(2 for all y€ (0,1R?), where Ay is the cut-oﬁ' eigenvalue. A simple suﬁicnent condition is found as
Eg above, by taking ¢, = — 1, in which case (8.23) may be rewritten
o&t) L : Co
8% o> 2f‘y (1 4y ) ' (8.24)
=Z ‘ -1 ,
- ) '
ol Noting that the common factor on the rlght-hand side of (8.24) is Just four times that of (8. 20),
we have 41 A ‘
2 N > . o
| Q >‘0.77207a (1 +—= ) if R> (3.#87 24 /a)t | (8.25a)
2 aR4 /\N . - %
and Q> ———2(&"‘"’—1) (1+ ) ‘1f“ R< (3.18724/&)‘. | (8.25b)

Again the factor of } appears in comparison with the linear stability criterion.
Nonlinear stability requires that we bound ¢,, and e,,:

- oy

R (o P P
T

~ ay __ ,
= 0<m < [e2ay21 (ﬂ) (1 +9—if;—)—)] <m* <. (8.26)
> > |
@) : With the special choice ¢, = —1 we may take t* = |—=6/af| = 1/a2 (= ¢") and
R~ : w_
O m~ = min [e ! 12] 0. 77207a 9"2
O  velo. &Y 2“.'/ e
= uw

(R (3.18724/a)}) or 2(eFF'—1)/aR*~Q7® (R< (3 187 24/«) #). Finally, via inequality
m~ > A, "% of Theorem 5.2, this yields a sufficient condition for nonlinear stability identical
to that for formal stability (8.254, b). As in Example 2, we must appeal to the fact that, although
m* = o0 because of the term (e*! —1) /2ocy in ey, f (e —1)/2ay® (Ak)?d% is finite.

In the above; as in Example 2, we have sought simple criteria rather than optimizing our
sufficient conditions by varying the free constant c,. In specific flow situations, with a, 8, ¢
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350 A.SZERI AND P.HOLMES

given, one may improve the criteria. We indicate how this can be done in the case of jet-like
profiles (6 > 0). Recall that we wish to choose ¢, so that m™/£*? is maximized to obtain the best

criterion.
Let ‘ '
Hepy) = —;15 (1 +—'——(1 -;cz) C“") ) (8.274a)
e?—1 1 146\ .,

m(cy, y) = [ 2 —of (1+( 3 )e )], (8.27b)

(recall £ = |£/4}), in which case
t'(cy) = max (c,y); m(c,) = min m(cy,y). (8.28)

" yel0,3rY velo,}RY

We first observe that, because é > O for jet-like profiles, £*(¢,) > £ (—1) for¢, > —1 or¢, € —1.
Moreover, m (¢c,) <m (—1) for ¢, > —1. These conclusions follow from the fact that
(14+[(14¢,)/8] e?¥) > 1 for all y and ¢, > —1. While m™(c,) increases as ¢, — 00, the ratio
m™(c,)/t*(¢c,)? is dominated by #** ~ ¢ and we therefore conclude that to improve upon
¢, = —1, we must pick ¢, < —1 but |¢,| not too large. The optimum depends in a complicated
way on , 6 and R, the domain radius, but in general the best choices seem to lie in range around
—(14+6). (When ¢, =—(149),#(c,,y) =0 at y =0.) For example, taking a =2, § =2,

=|f/8] = 10 and R = 1 we compute m™~(—1)/t"(—1)? = 683.2 whereas for ¢, = —2.076 we
have m™(c,)/t"(c;)* = 8,227. With the bound Ay = 4n*(N+2)2/R* from (4.3), this choice
permits us to prove stability to all wavenumbers N < 7, whereas ¢, = —1 only gives stability
for N < 2. Here the small radius is important: one gcnerally finds that ¢, = —1 is close to
optimal for large 3aR?.

Our final example is special in that we can obtain a nonlinear stability criterion that is, for
physical purposes, independent of the high-wavenumber cut off that appears as the eigenvalue
Ay in (8.25). To do this we take a distinguished limit R~ 00, N—> 00 with L, = R/+/ N fixed.
L, is chosen to agree with the approximate spacing, near r = 0, of zeros in the eigenfunctions
of & for N large (cf. §4). Specifically, consider a vortex density disturbance of the form
Ay = c¢y, where ¢, is a high-order eigenfunction of & and ¢ is a constant of O(x,),
with dimensions (length)™(time)™. The corresponding disturbance in axial velocity is
- Aw ~ (R?/N) Ay. Thus an appropriate Reynolds number for the disturbance is

esat¥ L L (8.29)

where v is the kinematic viscosity. This Reynolds number is of order one when v ~ (R3 /M¢, or
v~ Lic. Thus for L} <v/c, the effects of viscosity predominate in the cvolution of the
disturbance velocity field. If we take the limit R— 00, N— 00 with L, = R/4/N = *, where
v« = v/cis the kinematic viscosity divided by a representative vortex density of the equilibrium
flow, we obtain a stability result for Example 3 that is independent of high-frequency cut
off: : : ‘
, 1 + 4n?
0.77207a * 0.77207a%, ,
This is a sufficient ‘physical’ condition for nonlinear stability of the Burgers vortex: plus

exponential jet or wake to all axisymmetric disturbances, provided that the amplitude of the
disturbances decays as 7— oo sufficiently quickly for the norm for nonlinear stability to be

Q> (8.30)


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

STABILITY OF SWIRLING FLOWS 351

finite. Certainly Example 3 is not the only case for which one may obtain stability ‘results
independent of high-frequency cut off.

Figure 2a shows the criterion (8.30) and figure 24 illustrates a swirl velocity proﬁle that is
stable when combined with the jet of figure 15.

2() -
(4)
80F (g)
10
60
=~
o v ok
g 40 stable
S
<
-0+
-20= 1 ) )

af/cm™?

FiGure 2. (a) Stability dlagram for Burgers vortex with exponential jet in air (20 °C, 8 = 2 cm s7!). Depicted are
sufficient physical criteria for nonlinear stablllty and formal stablhty (broken line). () Stable-swirl velocnty
profile. This Burgers vortex (8 = 12 cm® 5™}, @ = 10 cm™?) is stable in combination with the exponential _]et of
figure 15.

We remark that we have taken a distinguished limit in Example 3 in contrast to the simple
discussion of viscous effects in §4. Here R and N tend to infinity with L, fixed, whereas in §4
we let N tend to infinity to show that high-wavenumber disturbances decay.

9. CONCLUSIONS

We have considered the nonlinear stability of axisymmetric flows of an incompressible,
inviscid fluid to axisymmetric disturbances via the energy-Casimir method of Arnol’d. Note
that although nonlinear stability and formal stability results are obtained, which are stronger
than linear stability, the stability is not global (Joseph 1976): we are restricted to finite but
possibly arbitrarily small disturbances. Central to the method is the proof of the convexity of
a conserved function of the dynamical variables at an equilibrium configuration of the system.
For each of the three classes of axisymmetric flows we have considered, general, columnar and
" non-rotating, the conserved function was constructed from the total kinetic energy of the fluid
“and from constants of the motion corresponding to symmetries inherent in the given
geometry. '

These quantities are intimately related to the non-canonical hamiltonian structure as
expressed in the Lie-Poisson bracket (2.6). The complexity of the boundary terms in (2.6)
reflects our desire to accommodate as broad and as physically reasonable a class of
perturbations as possible. In some earlier nonlinear stability analyses via the Arnol’d energy-
Casimir method, strong assumptions were made on the classes of admissible perturbations.
Such assumptions yield mathematically elegant formulations but are unduly restrictive and fail
to capture the full range of physical behaviour. Examples include assumptions like preservation
of boundary circulation by disturbances of plane parallel flows in Holm et al. (1984, 198 5), and
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zero density variation on connected components of the boundary in the analysis of two-
dimensional Boussinesq flow in Abarbanel ef al. (1986).

For general axisymmetric flow, the convexity analysis of the appropriate Arnol’d function
yields conditions on the baseflow sufficient to ensure nonlinear stability. Convexity generally
fails, however, for disturbances in vortex density of arbitrarily large wavenumber. We argue
that such disturbances are physically inconsistent with an inviscid description of the flow.
Appeal to a wavenumber cut off for the perturbations yields sharp, conditional nonlinear
stability criteria.

The analysis for columnar flows parallels that for flows with non-trivial axial dependence.
In addition, we obtain a necessary condition for formal stability reminiscent of the sufficient
condition for linear stability of Howard & Gupta (1962). In §8, we present two examples that
demonstrate the application of the results of the analysis. For the important example of a flow
prone to vortex breakdown, it is demonstrated that one may obtain a nonlinear stability result
without further restriction of the class of admissible disturbances in the form of a high-
wavenumber cut off. In both examples, we show that faster rates of rotation tend to stabilize
the flow. '

Finally, in §6, we developed the theory of the nonlinear stability of non-rotating flows to
non-rotating axisymmetric disturbances. For geometrical reasons, this theory is closely
analogous to Arnol’d’s original anslysis of the nonlinear stability of planar, incompressible flow.
Stability criteria for non-rotating axisymmetric flows are obtained without the need of a high-
wavenumber cut off. An example illustrating the application of the result is also given in §8.
The example demonstrates that exponential jets are stable, as are exponential wakes of
‘shallow’ profile.

We thank S. Leibovich, J. E. Marsden and D. Lewis for several helpful discussions and
advice. A.S. was supported by NSF graduate fellowship, and under RCD 85-50714. P.H. was
supported by NSF under CME 84-02069 and ONR under SROIV, N00014-85-K-0172.

‘AP_PENDIX. PQISSON BRACKET COMPUTATIONS

In this Appendix, we give a sample calculation that proves that the generalized swirl (2.115)
is a Casimir. First, we give a useful identity for the canonical y—z bracket (2.3), which may be
proven by integration by parts

" riR® L L iRt
Jf{g,h}dsx=f {f,g}lzd’x+f ﬂzg—g 2ndy~— 2ndz. - (A1)

To show that Cg is a Casimir, we must show that {CS, G®=0 for any function G(x, k). We
have
3G 8C, 8G 8C; 3G 3C;
0 = — -5 3
%8 f [X{Sx’ Sx}+ {SK 5x}+ {5x B }]d
8Cs @ (8G\ 3G 0 (3Cy )]
+ [ G2 (-5 G 2me

+J"‘a_/c[§(_;g(80)' SGSC]
o 0z |8y, 0z \ 8y wa ok

2m dz. (A 2)
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We compute the functional derivatives of C(k) from the definition (2.115)

8, . . 8C

8C ,
=0, '37;—]("), S'u—b—o

Sx
Substituting into (A 2), and using the antisymmetry of {-,*}, gives

€6 = [ [-x{rw. g e[ [sornE+x KU )

Application of the identity (A 1) yields

3G L 8G L
Cs, 0=j———x,"x d? -—f — 2ndy.
{SG}‘ b SX{ J()} x 0K8wb 0 y

IS L Te . I

2 —_ — 4
. ndz J; stay(] (x))
: (A3)

Now we use the assumption that the baseflow is periodic, thus terms like

[ 2 G|

vanish. Because 8G/du, is divergence free, 6G/dw, in the second term is independent of z and
can be pulled out of the integral. This leaves the integral of a perfect differential in the place
of the second term whose result is zero because of periodicity. Finally, {k,j’(x)} = 0 because
and j’(«) are dependent. Thus Cg is a Casimir of the axisymmetric Lie-Poisson bracket with
respect to all hamiltonian functions G including the hamiltonian (2.4). One may check that
Cs(x, k) is conserved by direct differentiation of Cg with respect to time and the use of the
equations of motion.

2rdy

REFERENCES

Abarbanel, H. D. I., Holm, D. D., Marsden, J. E. & Ratiu, T. S. 1986 Nonlinear stability analysis of stratified
fluid equilibria. Pkil. Trans. R. Soc. Lond. A 318, 349-409.

Arnol’d, V. 1. 1965 Conditions for the nonlinear stability of the stationary plane curvilinear flows of an ideal fluid.
Dokl. Mat. Nauk. 162, 773-7177.

Arnol’d, V. 1. 1966 Sur la géometrie differentielle des groups de Lie de dimension infinie et ses applications a
I’hydrodynamique des fluides parfalts Annls Inst. Fourier, Grenoble 16, 319-361.

Arnol’d, V. 1. 1969 On an a priori estimate in the theory of hydrodynamic stability. [Enghsh translation] Am. math.
Soc. Transl. 19, 267-269. :

Ball, J. M. & Marsden, J. E. 1984 Quasiconvexity, second variations and nonlinear stablllty in elasticity. Arch.
ration. Mech. Analysis 86, 251-277.

Benjamin, T.B. 1976 The alliance of practical and analytic insights into the nonlinear problems of fluid
mechanics. Lecture Notes in Math, no. 503. New York: Springer-Verlag.

Benjamin, T. B. 1984 Impulse, flow force and variational principles. IMA J. appl. Math. 32, 3-68.

Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic stabzlzty New York: Cambridge University Press.

Fjortoft, R. 1950 Application of integral theorems in- deriving criteria of stability for laminar flows and for the
baroclinic circular vortex. Geofys. Publr. 17, 1-52.

Garg, A. K. & Leibovich, S. 1979 Spectral charactcnsncs of vortex breakdown flowfields. Physics Fluids 22,
2053-2063.

Holm, D. D. 1986 Hamiltonian formulation of the baroclinic quasi-geostrophic fluid equations. Physics Fluids 29,
7-8.

Holm, D. D., Marsden, J. E. & Ratiu, T. 1984 Nonlinear stability of the Kelvin—Stuart cat’s eyes flow. (Preprint,
Center for Pure and Applied Mathematics, University of California, Berkeley).

Holm, D. D., Marsden, J. E., Ratiu, T. & Weinstein, A. 1985 Nonlinear stability of fluid and plasma equilibria.
Physics Rep. 123, 1-116.

Holmes, P.J. & Marsden, J. E. 1983 Horseshoes and Arnol’d diffusion for Hamiltonian systems on Lie Groups.
Indiana Univ. math. J. 32, 273-310.


http://rsta.royalsocietypublishing.org/

A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

>~
O H
~ =
k= O
= O
= uw

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

354 A.SZERI AND P HOLMES

Howard, L. N. & Gupta, A. S. 1962 On the hydrodynamic and hydromagnetic stability of swirling flows. J. Fluid
Mech. 14, 463-476.

Joseph, D. D. 1976 Stability of fluid motions I. New York: Springer-Verlag.

Leibovich, S. 1978 The structure of vortex breakdown. A. Rev. Fluid Mech. 10, 221-246.

Leibovich, S. & Randall, J. D. 19734 Amplification and decay of long nonlincar waves. J. Fluid Mech. 53,
481-493.

Leibovich, S. & Randall, J. D. 197346 The critical state: a trapped wave model of vortex breakdown. J. Fluid Mech.
53, 495-515.

Leibovich, S. & Stewartson, K. 1983 A sufficient condition for the instability of columnar vortices. J. Fluid Mech.
126, 335-356.

Leibovich, S. 1984 Vortex stability and breakdown: survey and extension. AIAA JI 22, 1192-1206.

Lewis, D., Marsden, J. E., Montgomery, R. & Ratiu, T. 1986 The hamiltonian structure for dynamic free
boundary problems. Physica D 18, 391-404.

Maslowe, S. A. & Stewartson, K. 1982 On the linear inviscid stability of rotating Poiscuille flow. Physics Fluids 25,
1517-1523.

Rayleigh, Lord 1880 On the stability, or instability, of certain fluid motions. Proc. Lond. math. Soc. 11. 57-70.

Rayleigh, Lord 1916 On the dynamics of revolving fluids. Proc. R. Soc. Lond. A 93, 148-154.

Synge, J. L. 1933 The stability of heterogeneous liquids. Trans. R. Soc. Can. 27, 1-18.

Wan, Y. H. 1988 Variational principles of Hill’s spherical vortex and nearly spherical vortices. Trans. Am. math
Soc. (In the press.)

Wan, Y. H. & Pulvirenti, M. 1985 Nonlincar stability of circular vortex patches. Commun math. Phys. 99,
435-450.


http://rsta.royalsocietypublishing.org/

